(2)连接材料-互联条
互联条作为组件内电路连接的一部分,降低互联条电阻也可降低热损耗。我们对同一互联条厂家两种规格(0.23(厚度)mm *1.5(宽度)mm和0.2 mm *1.6mm)互联条的线电阻进行对比,如表二,0.23*1.5mm规格比0.20*1.6mm规格电阻低约8%,同时0.23 mm *1.5mm互联条相对较窄,可以减少焊带遮光面积提升电池片转换效率。实验方面,用这两种规格互联条同时生产各1000块光伏组件,并用相同3A级功率测试机台(单因子对比)测试对比,采用0.23 mm *1.5mm规格互联条的组件平均功率高约1.5W。由于互联条截面积变化有可能造成如碎片率等其它成本值变化,因此在导入时需综合考虑各方面因素。
表二 不同规格互联条电阻差异情况
三、封装材料的功率损耗分析及改善:
引起光损失的封装材料有玻璃、EVA、背板等。
(1)玻璃
光照射到光伏组件上时,由于一部分光被玻璃反射而不能全部被电池片吸收,导致光损失。在玻璃表面镀制低折射率薄膜(通常为SiO2),可减少光反射、提高透光率,从而提升电池效率。
使用北京奥博泰GST3测试仪,对玻璃镀膜前后透光率进行测量。根据图一可看出,玻璃在镀膜前透光率约为91%,在玻璃表面增加减反增透膜后透光可提升约2%-4%。试生产1000块组件,除玻璃外其它材料一致(单因子对比),运用相同测试机台测试,可发现增加增透膜后CTM(投入产出比)提升1.5%以上。
图一 玻璃蒸镀增透膜前后透光率对比
其次,为了更好地提高光透过率,也可以在玻璃正反面镀制两层或多层薄膜。
(2)EVA
由于紫外光长期照射容易造成背板或EVA老化、龟裂、变黄,因此EVA厂家一般会在EVA中添加抗紫外剂。我们对某EVA膜添加抗紫外剂前后光谱透光率进行比较分析,如图2,可知在添加抗紫外剂后400nm以下的短波段光谱被截止掉了,而截止掉的紫外光会影响电池片封装转换效率。因此,在电池片受光面使用未加抗紫外添加剂的EVA,电池片非受光面使用添加抗紫外剂的EVA,这样既防止背板黄变又提高了电池受光。经过试验,用电池正面加添加剂的EVA与不加添加剂EVA各生产10块组件,组件其他材料均一致(单因子对比),使用全光谱测试仪测试发现不加添加剂EVA CTM高 1%以上。
图2添加抗紫外剂前后EVA透光率比较
(3)背板
背板的光反射率也是组件转换效率的重要影响因素。根据实验,如黑色背板及透明背板明显比白色背板效率低(一般会低1%-2%)。因此,背板反射率也是评估导入的一项重要指标。
四、小结
从上文分析可知,改善组件功率损耗可以通过改变材料截面积(如增加材料宽度、厚度)、在玻璃表面蒸镀减反膜、使用未添加抗紫外剂的EVA等方面进行。但材料的优化往往会伴随成本上升,因此是否导入通常会根据整体效益确定。
来源:Solarzoom